From Functional Programs to Pipelined Dataflow
Networks

Richard Townsend
Martha A. Kim Stephen A. Edwards

Columbia University

IBM PL Day, December 5, 2016

The Future of Hardware

40 Years of Microprocessor Trend Data

7
10 Transistors
108 (thousands)
5 Single-Thread
10
Performance
10t (SpecINT x 10°%)
Frequency (MHz)
103 AL
A Typical Power
102 A i.. -~ (Watts)
4 4 - Number of
10 i —— . Logical Cores
o i g v v i vV
10 _.‘.A., DI eee

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Rupp, Karl. 40 Years Of Microprocessor Trend Data. 2015. Web. 28 Nov. 2016.

Designing Specialized Hardware

A

Abstraction

Stage in the Design Process

Designing Specialized Hardware

A

Abstraction

Stage in the Design Process

Designing Specialized Hardware

A

C

PROGRAMMING

Abstraction

* Combinationlogic ~ Register

Stage in the Design Process

Designing Specialized Hardware

A

1C}

PROGRAMMING

Abstraction

* Combinationlogic ~ Register

Stage in the Design Process

Designing Specialized Hardware

A

1C}

PROGRAMMING

Abstraction

* Combinationlogic ~ Register

Stage in the Design Process

Overview

A
&

Floh IR Dataflow Networks Hardware Simulation

McGreggor, Duncan. Prefix Operators in Haskell. 2014. Web. 30 Nov. 2016.
Kuper, Jan. CAaSH: From Haskell to Hardware. 2015. Web. 30 Nov. 2016.

Floh (Functional Language on Hardware)

data List = Nil | Cons Int List

recMath :: List — Int — Int

recMath | x =
case | of
Nil — add x 1

Cons y xs — recMath xs (mul x y)

Floh (Functional Language on Hardware)

data List = Nil | Cons Int List

» True recursion — stack

recMath :: List — Int — Int

recMath | x =
case | of
Nil — add x 1

Cons y xs — recMath xs (mul x y)

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int List
data Go = Go

» True recursion — stack

. » Trigger constants with Go
recMath :: List — Int — Go —Int &8

recMath | x g =
case | of
Nil _ — addx (1 g)

Cons y xs — recMath xs (mul x y) g

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readlList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readlList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Strictness Policies

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readlList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Strictness Policies
» Data Constructors: strict — evaluate all arguments

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readlList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Strictness Policies
» Data Constructors: strict — evaluate all arguments
» Functions: non-strict — evaluate first argument

Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
case readlList Ip of memory operations
Nil _ —addx (1 g)

Cons y xs — recMath xs (mul x y) g

Strictness Policies
» Data Constructors: strict — evaluate all arguments
» Functions: non-strict — evaluate first argument
» Enables pipeline parallelism!

From Floh to Dataflow

From Floh to Dataflow

recMath Ip x g =
case readList Ip of
Nil _ — add x (1 g)
Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

recMath Ip x g =
case readList Ip of
Nil _ — addx (1 g)
Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

recMath Ip x g =
case readList Ip of
Nil _ — addx (1 g)
Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

"l
7

recMath Ip x g =
case readList Ip of
Nil _ — add x (1 g)

Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

"l
?—

recMath Ip x g =
case readList Ip of
Nil _ — add x (1 g)

Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

recMath Ip x g =
case readList Ip of
Nil _ — addx (1 g)
Cons y xs —
recMath xs (mul x y) g

|

"l

Yy Xs

?«—0—4

From Floh to Dataflow

recMath Ip x g =
case readList Ip of
Nil _ — addx (1 g)
Cons y xs —
recMath xs (mul x y) g

|

"l

Y1 xs

?«—0—4

From Floh to Dataflow

|pl X | g+
?— é«—'—«—t»
recMath Ip x g =

case readList Ip of
Vol o

Nil _ — addx (1 g)
recMath xs (mul x y) g y

Cons y xs —

From Floh to Dataflow

|pl X | gl
il .
recMath Ip x g =

case readList Ip of
Vol o

Nil _ — addx (1 g)
recMath xs (mul x y) g y

Cons y xs —

From Floh to Dataflow

|pl X | gl
il .
recMath Ip x g =

case readList Ip of
Vol o

Nil _ — addx (1 g)
recMath xs (mul x y) g y

Cons y xs —

From Floh to Dataflow

|pl X | gl
& A
recMath Ip x g =

case readList Ip of
Ve K

Nil _ — addx (1 g)
recMath xs (mul x y) g y

Cons y xs —

From Floh to Dataflow

| XLU%; |
o

recMath Ip x g =

case readList Ip of
Nil _ — addx (1 g)
Cons y xs —
recMath xs (mul x y) g

From Floh to Dataflow

| XLU%; |
o

Nil Cons

recMath Ip x g =
case readList Ip of
Nil _ — addx (1 g)

Cons y xs —
recMath xs (mul x y) g

e

From Floh to Dataflow

|p X | g
l—] I
T T
recMath Ip x g =
case readList Ip of
Nil _ — add x (1 J/— l__/—\
Cons R (g) Nil Cons Nil Cons *+ Nil Cons
recMath xs (mul x y) g Y| xs l L

L Y

mul

From Floh to Dataflow

Iplﬁ x‘lh glﬁ

i >

recMath Ip x g =
case readlist Ip of
lc\lélns_ addxte) Nil Cons Jm@ns *L>/ Nil Cons \
y Xs — i l L
Y| xs

recMath xs (mul x y) g
R

mul

From Floh to Dataflow

|

—
T T
recMath Ip x g =
case readList Ip of

Nil — add x (1 g)

Cons y xs — Nil Cons J/ NI' Cons \+
recMath xs (mul x y) g vl xs

o

1

—

l—# Nil Cons \

L Y

mul

l

t |

From Floh to Dataflow

1

Ip X | g
= £ |
T 7T
recMath Ip x g = readList
Nil Cons
Y| xs

case readList Ip of *-
Nl _ —addx (1 g) qj/ Nil Cons «L>/ Nil Cons \

Cons y xs — i l L

recMath xs (mul x y) g
i Y

mul

i

From Floh to Dataflow

X

Iplﬁ T

recMath Ip x g =
case readList Ip of
CNollns_ — add x (1 g) T J/ Nil Cons \W
ath i oL
recMath xs (mul x y) g Y| xs

L Y

mul

o

From Floh to Dataflow

recMath Ip x g =
case readlist Ip of
Nil _ — addx (1 g)
Cons y Xs —
recMath xs (mul x y) g

Iplﬁ T

:

? \w2
eadList

Nil Cons

Nil Cons J/ Nil Cons \+—
Y| xs ?

|

mul

From Floh to Dataflow

Ip X | g
e 0 |
T T
recMath Ip x g =
case readList Ip of
Nil — add x (1 g)

Consyxs — Nil Cons J/ Nil Cons \— Nil Cons
recMath xs (mul x y) g v | xs T

l y Y

mul add

i

—

:

~—{~]e]

From Floh to Dataflow

Ip X | g
e 0 |
T T
recMath Ip x g =
case readList Ip of
Nil — add x (1 g)

Consyxs — Nil Cons J/ Nil Cons \— Nil Cons
recMath xs (mul x y) g v | xs T

l y Y

mul add

i

—

-

~o{~]—]

From Floh to Dataflow

Ip X | g
e 0 |
T T
recMath Ip x g =
case readList Ip of
Nil — add x (1 g)

= - J/ Nil Cons *+— Nil Cons
Cons y xs — Nil Cons
recMath xs (mul x y) g Y| xs

l v Y

mul add

i

—(

-

=]

Non-strictness Exploits Pipeline Parallelism

Completion Cycles (Relative to Strict)

12

0.8

0.6

0.

iN

0.

N

Non-Strict with Finite Buffers s
Non-strict with Infinite FIFOs mmm—m

Tre

" MergeSort

Non-strictness Exploits Pipeline Parallelism

Completion Cycles (Relative to Strict)

12

0.8

0.6

0.

iN

0.

N

0

Non-Strict with Finite Buffers s
Non-strict with Infinite FIFOs mmm—m

1.3 speedup

2% speedup

" Append ~ DFS Fiter M o o ’

ap MergeSort TreeMap

Non-strictness Exploits Pipeline Parallelism

Completion Cycles (Relative to Strict)

12

0.8

0.6

0.

iN

0.

N

0

Non-Strict with Finite Buffers s
Non-strict with Infinite FIFOs mmm—m

1.3 speedup

2% speedup

" Append ~ DFS Fiter M o o ’

ap MergeSort TreeMap

