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The Future of Hardware

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Rupp, Karl. 40 Years Of Microprocessor Trend Data. 2015. Web. 28 Nov. 2016.
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McGreggor, Duncan. Prefix Operators in Haskell. 2014. Web. 30 Nov. 2016.
Kuper, Jan. CAaSH: From Haskell to Hardware. 2015. Web. 30 Nov. 2016.
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data Go = Go

data ListPtr = ListPtr Int » True recursion — stack

» Trigger constants with Go
recMath :: ListPtr — Int — Go — Int &8

recMath Ip x g = > Recursive types. — explicit
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Strictness Policies
» Data Constructors: strict — evaluate all arguments
» Functions: non-strict — evaluate first argument
» Enables pipeline parallelism!
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