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The Future of Hardware

Rupp, Karl. 40 Years Of Microprocessor Trend Data. 2015. Web. 28 Nov. 2016.
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Overview

Floh IR Dataflow Networks Hardware Simulation

McGreggor, Duncan. Prefix Operators in Haskell. 2014. Web. 30 Nov. 2016.
Kuper, Jan. CλaSH: From Haskell to Hardware. 2015. Web. 30 Nov. 2016.



Floh (Functional Language on Hardware)

data List = Nil | Cons Int List

recMath :: List → Int → Int
recMath l x =

case l of
Nil → add x 1
Cons y xs → recMath xs (mul x y)

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!
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From Floh to Dataflow
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Non-strictness Exploits Pipeline Parallelism
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Non-Strict with Finite Buffers
Non-strict with Infinite FIFOs

TreeMapMergeSortMapFilterDFSAppend

1.3× speedup

2× speedup
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