
From Functional Programs to Pipelined Dataflow
Networks

Richard Townsend
Martha A. Kim Stephen A. Edwards

Columbia University

IBM PL Day, December 5, 2016



The Future of Hardware

Rupp, Karl. 40 Years Of Microprocessor Trend Data. 2015. Web. 28 Nov. 2016.



Designing Specialized Hardware

Stage in the Design Process

Ab
st
ra
ct
io
n



Designing Specialized Hardware

Stage in the Design Process

Ab
st
ra
ct
io
n



Designing Specialized Hardware

Stage in the Design Process

Ab
st
ra
ct
io
n



Designing Specialized Hardware

Stage in the Design Process

Ab
st
ra
ct
io
n



Designing Specialized Hardware

Stage in the Design Process

Ab
st
ra
ct
io
n



Overview

Floh IR Dataflow Networks Hardware Simulation

McGreggor, Duncan. Prefix Operators in Haskell. 2014. Web. 30 Nov. 2016.
Kuper, Jan. CλaSH: From Haskell to Hardware. 2015. Web. 30 Nov. 2016.



Floh (Functional Language on Hardware)

data List = Nil | Cons Int List

recMath :: List → Int → Int
recMath l x =

case l of
Nil → add x 1
Cons y xs → recMath xs (mul x y)

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil | Cons Int List

recMath :: List → Int → Int
recMath l x =

case l of
Nil → add x 1
Cons y xs → recMath xs (mul x y)

I True recursion → stack

I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int List
data Go = Go

recMath :: List → Int → Go → Int
recMath l x g =

case l of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go

I Recursive types → explicit
memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies

I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies
I Data Constructors: strict – evaluate all arguments

I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies
I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument

I Enables pipeline parallelism!



Floh (Functional Language on Hardware)

data List = Nil Go | Cons Int ListPtr
data Go = Go
data ListPtr = ListPtr Int

recMath :: ListPtr → Int → Go → Int
recMath lp x g =

case readList lp of
Nil _ → add x (1 g)
Cons y xs → recMath xs (mul x y) g

I True recursion → stack
I Trigger constants with Go
I Recursive types → explicit

memory operations

Strictness Policies
I Data Constructors: strict – evaluate all arguments
I Functions: non-strict – evaluate first argument
I Enables pipeline parallelism!



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



From Floh to Dataflow

recMath lp x g =
case readList lp of
Nil _ → add x (1 g)
Cons y xs →
recMath xs (mul x y) g

glp x

readList

Nil Cons

y xs

Nil ConsNil Cons

mul

1

add



Non-strictness Exploits Pipeline Parallelism

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
om

pl
et

io
n 

C
yc

le
s 

(R
el

at
iv

e 
to

 S
tr

ic
t)

Non-Strict with Finite Buffers
Non-strict with Infinite FIFOs

TreeMapMergeSortMapFilterDFSAppend

1.3× speedup

2× speedup



Non-strictness Exploits Pipeline Parallelism

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
om

pl
et

io
n 

C
yc

le
s 

(R
el

at
iv

e 
to

 S
tr

ic
t)

Non-Strict with Finite Buffers
Non-strict with Infinite FIFOs

TreeMapMergeSortMapFilterDFSAppend

1.3× speedup

2× speedup



Non-strictness Exploits Pipeline Parallelism

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
om

pl
et

io
n 

C
yc

le
s 

(R
el

at
iv

e 
to

 S
tr

ic
t)

Non-Strict with Finite Buffers
Non-strict with Infinite FIFOs

TreeMapMergeSortMapFilterDFSAppend

1.3× speedup

2× speedup


