CS 107: Compilers
Spring 2022

https://canvas.tufts.edu/courses/35680/

Class Sessions Mo, We 4:30pm-5:45pm EST
Cummings Center Room 140

Instructor Richard Townsend, richard@cs.tufts.edu

Richard’s Office Hours (Cummings 440A) Tues. 2:30pm-4:30pm EST
(Or by appointment)

PhD TA Mert Erden, Mert.Erden@tufts.edu

Mert’s Office Hours Wed. 12pm-1:30pm EST (Zoom ID: 410 252 2606)
Thurs. 1:30pm-3pm EST (In-person in Cummings 372)

1 Course Overview

Summary

In CS 107, you will learn about the design and implementation of modern compilers. The course
will focus on the main steps of general compilation (Scanning, Parsing, Semantic Checking, and
Code Generation), while also introducing compilation techniques for language-specific features.
Traditional compiler optimizations will also be introduced.

Outside the classroom, the focus of the course is an intensive, semester-long project: you and a
team will design a small programming language and implement a compiler for it using the OCaml
language. The algorithms and concepts you will learn have broad application outside of the course:
many programming tasks can be understood as variations of interpretation or translation, and
understanding how a compiler operates will further develop your abstract thinking skills and make
you a better programmer.

Logistics (i.e., the Quarantine Policy)

This course will have in-person class sessions and a mix of in-person and virtual office hours. Class
sessions will be live-streamed and recorded to accomodate students who need to quarantine due to
COVID; recordings can be found in the Echo360 section of the course Canvas page. If you need to
quarantine during a project check-in day, please communicate with your project group to decide
how (or if) you’ll participate virtually.

Prerequisites

e CS 40 Machine Structure and Assembly-Language Programming: You will be dividing into
teams to build a compiler, so you need to know how to keep a large software project under
control (e.g., Makefiles and source code control systems, budgeting time, allocating work to
team members). You also should understand how primitive types are represented at the
machine level.


https://canvas.tufts.edu/courses/35680/

e (S 105 Programming Languages: You will need some experience writing code in a functional
language that provides higher-order functions, first-class functions, algebraic data types, and
pattern-matching. It is also assumed that you have a basic grasp of type checking.

Course Goals

By the end of this course, students should be able to
1. appraise the benefits and limitations of functional programming.
2. relate formal language theory to front-end compiler implementation.
3. describe a compiler’s responsibilities and their ramifications on a computer system as a whole.
4. motivate and describe the four essential phases of a compiler.

5. recognize the difficulties faced by a group working on a large, long-term software project, and
develop potential solutions to those difficulties.

2 Technical Resources

Piazza

We will be using Piazza for class discussion; you can get to the 107 page via this link or on the
Syllabus page of the course Canvas site. Piazza will host all of our major course announce-
ments; it is your responsibility to check in regularly to avoid missing any important
information.

In general, you should post all questions related to the course on Piazza; post publicly if at all
possible, as other students may have similar questions or be able to help you faster than the course
staff. Please post privately to the course staff if your question reveals individual work (e.g., part of
a solution to a homework problem) or concerns your grades.

Suggested Textbook(s)
While this course has no required textbook, the following references can help facilitate your under-
standing of the covered content.

e Modern Compiler Implementation in ML. Andrew W. Appel. Cambridge University Press,
2004.

An excellent book on how to actually implement a compiler in ML (Appel also published
Java- and C-based textbooks).

e Compilers: Principles, Techniques, and Tools, 2nd Edition. Alfred V. Aho, Monica S. Lam,
Ravi Sethi, Jeffrey D. Ullman. Addison-Wesley, 2006.

The “dragon book” has long been touted as the definitive textbook on the theory of compiler
design. While some sections have become dated due to language evolution and improvements
in computer architecture, many are still completely applicable today (especially those on
front-end compiler design and compiler optimizations).

e Engineering a Compiler, 2th Edition. Keith D. Cooper and Linda Torczon. Morgan Kauf-
mann, 2012.


https://piazza.com/tufts/spring2022/cs107

A combination of the previous two textbooks, one might say. They cover not only lots of
the theory of compiler design, but also suggestions on how to implement compiler passes on
today’s machines.

Class Materials

All slides will be posted on the course website within a day of their presentation in class. They can
be found in the “Files” section of Canvas, with links to appropriate slidedecks in the “Modules”
section.

OCaml resources
Start at the OCaml homepage to find compiler installation instructions and documentation and
the user’s manual for the whole system, including ocamllex, ocamlyacc, and all standard libraries.

OCaml tutorials: Real World OCaml is a cogent, well-written textbook (completely online) that
covers the OCaml language; the first chapter is an excellent complement to my OCaml slides. The
official website also has a collection of tutorials, but these are more loosely organized.

Project resources

Some examples are provided on the course website to give you a feel of what can make a stellar
project (see the second Module). Feel free to use these examples for inspiration, but avoid any
form of plagiarism.

The success of your project is strongly tied to your ability to use version control systems like git
or svn. These tools will let you collaborate on code files, track each member’s contributions and
modifications to the project, and ensure everyone has access to the same codebase. The Tufts CS
department provides students with free public or private Gitlab instances; take advantage of them!
If you’ve never used git before, here are some tutorials:

e An intro to git and github for beginners.
e A collection of guides for github use.

e Full documentation on the git version control system.

We will not be covering git in class; please post on Piazza or attend Office Hours if you need
assistance setting up or using a version control system.

3 Tentative Schedule

Below you will find the tentative schedule for the semester. Topics and assignments are subject to
change, and may be updated as the semester progresses (you will be informed of any changes as
soon as they happen).

The red highlighted class periods indicate sessions where your group will meet with your project
advisor to receive feedback on important project deliverables and check-in concerning your progress.
It is imperative that all group members attend each of these sessions!


https://ocaml.org
https://ocaml.org/docs/install.html
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
https://realworldocaml.org
https://ocaml.org/learn/tutorials/
http://systems.eecs.tufts.edu/gitlab/
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://guides.github.com
https://git-scm.com/doc

Assignments
Week Date Topic HW Project
1 Jan 19 | Course Overview and Intro. to Languages
9 Jan 24 | Language Processors
Jan 26 | Essential OCaml I
3 Jan 31 | Essential OCaml II
Feb 02 | Lexing I: Regular Expressions and MicroC
Feb 04 | (Proposal Due Only) Proposal
4 Feb 07 | Proposal Feedback
Feb 09 | Lexing II: Theory of OCamllex HW 1
5 Feb 14 | Parsing I: Grammars and MicroC Lab 1
Feb 16 | Project Check-in
Feb 18 | (Lab 1 Due Only) Lab 1
6 Feb 21 | NO CLASS
Feb 23 | Parsing II: Shift-Reduce Parsing
Feb 24 | Parsing III: Theory of OCamlyacc Scanner & Parser
7 Feb 28 | Semantic Analysis and MicroC Lab 2 LRM
Mar 02 | Code Generation I: IRs and LLVM
Mar 04 | (Lab 2 Due Only) Lab 2
3 Mar 07 | LRM Feedback HW 2
Mar 09 | Code Generation II: MicroC Lab 3
9 Mar 14 | Project Check-in
Mar 16 | Runtime Environments I: The Stack Lab 3
10 Mar 21 | NO CLASS
Mar 22 | NO CLASS
Mar 23 | NO CLASS
Mar 24 | NO CLASS
Mar 25 | NO CLASS
1 Mar 28 | Runtime Environments II: The Heap Hello World
Mar 30 | Runtime Environments III: More Heap!
12 Apr 04 | Project Check-in
Apr 06 | NO CLASS
13 Apr 11 | Optimization I: Intro and Examples
Apr 13 | Optmization I: continued
14 Apr 18 | NO CLASS
Apr 20 | Optimization II: Liveness Analysis and Wrap-Up Extended Testsuite
Apr 22 | Project Check-in HW 3
15 Apr 25 | Buffer Class
Apr 27 | Buffer Class
16 May 03 | NO CLASS
May 6-7 | Presentations
May 7 | Project Report Due

The “Buffer” classes listed near the end of the course are meant to give the course schedule
some flexibility; if more time is required for some earlier concepts, the schedule can be pushed back
without sacrificing later content. If the course ends up moving faster or as anticipated, the content

of this class will be determined jointly by the instructor and students.




4 Assessments and Grading

Assessment will be based on five criteria:

1. One semester-long group project (65%): Design the goals, syntax, and semantics of a little
language, and implement a compiler for that language. Graded deliverables are as follows:
Proposal (5%), Scanner & Parser (9%), LRM (7%), Hello World (5%), Extended Testsuite
(9%), Final Submission and Project Report (30%).

2. Three Homework Assignments (15%): These written assignments will gauge your understand-
ing of theoretical compiler concepts and further prepare you for the project.

3. Three Labs (10%): These labs will take place during class sessions, giving you and a partner
the chance to explore an example compiler through a guided set of questions.

4. Participation (5%): Your engagement in class sessions and contributions during group check-
in and feedback sessions will be taken into consideration for this grade.

5. Peer-Assessment (5%): As part of your final project deliverable, you will privately assess your
teammates’ contributions to the project as a whole. Your teammates’ assessments will factor
into your final grade.

Homework, Lab, and Project Deliverable Logistics

All homework, lab, and project deliverables must be submitted via Canvas. No submissions will
be accepted via email or other means. Project deliverables will be submitted as a group, i.e., only
one member will submit the deliverable.

All deliverables are due at 11:59:00PM on their due date. To avoid missing this strict deadline,
you should submit whatever you have a bit earlier even if incomplete; you may submit as many
times as you wish before the deadline. We will always grade the latest submission.

Each deliverable will have specific instructions posted on Canvas. These instructions must be
followed exactly to receive a full grade.

Late Policy

All students have a budget of three “late tokens” for any deliverable except the proposal and the
final project report. It is your responsibility to track how many late tokens you’'ve used over the
semester. By expending a late token, you get a 24-hour extension on an assignment. This extension
happens automatically: when you turn in any piece of work past the deadline, the course software
charges you one late token. Expenditure of late tokens is governed by these rules:

e You may only use at most two late tokens on any given deliverable. No submission will
be accepted more than two days late.

e Once you are out of late tokens, you may still submit assignments late with a 15 point
penalty per day. Again, submissions received after two late days will receive a zero.

e If a group deliverable is late, that will use up a late token for each group member.

You should think of late tokens as extensions you have been granted ahead of time and use
them when you might have otherwise tried to ask for an extension.



If you experience an extraordinary difficulty, such as serious illness, family emergencies, or other
extraordinary unpleasant events, your first step should be to contact your advising dean as soon
as you can: explain the situation to them and ask them to contact Richard. Your dean will work
with Richard to make appropriate arrangements. IMPORTANT: The earlier you notify your
dean, the more flexibility the course staff will have to make appropriate arrangements.

Regrades and Grade Explanations

If you want to request a regrade for an objective error on our part, you must submit a private
request to the instructor via Piazza explaining the error. The deadline for these requests is one
week from the time the grades were posted for a given deliverable; no exceptions to this policy will
be made. A regrade request may or may not result in a new grade being assigned. You are always
welcome to ask for an explanation of the grade you received.

5 Collaboration and Academic Honesty

If you have any questions about the below policies or a specific situation dealing with academic
integrity, do not hesitate to ask the instructor. All students are expected to read and adhere to the
Tufts Academic Integrity Policy.

Collaboration: Projects

You will collaborate with a small team on the semester-long project; your approaches and designs
may be shared with other teams, but no code, text (for project submissions), or images should be
shared, partially or otherwise.

Collaboration: Homework

All homework assignments are individual work: while you may discuss the problems and general
strategies with classmates, each student is expected to ultimately come up with their own solu-
tion. Lifting partial or complete solutions from anyone (classmates, online sources, strangers) is
completely prohibited. To ensure you follow this policy, nothing should be written down, typed,
or recorded in any way from your discussions with other students about homeworks. You may not
work on the specific problems (i.e., produce or present problem-specific code or text) with anyone
other than TAs or the instructor, and you should not use the internet in any capacity to help solve
any problem. No questions, student solutions, or instructor-provided solutions should be posted
online in any capacity (except as a submission to Canvas).

Academic Honesty

Any violation of the above policies will be considered cheating, and all students involved in any
capacity will be forwarded directly to the Office of Student Affairs. Their sanctions range from
horrible to inconceivably horrible. It’s not worth it.

6 Policy on Sharing Materials

It is against Tufts policy for anyone to share any content made available in this course including
course syllabi, assignments, videos, and exams with anyone outside of the course without the


https://students.tufts.edu/student-affairs/student-code-conduct/academic-integrity-resources

express permission of the instructor. This especially includes any posting or sharing of videos
or other recordings on publicly accessible websites or forums. Any such sharing or posting could
violate copyright law or law that protects the privacy of student educational records.

7 Inclusivity, Accessibility, and Additional Help

This course is inclusive of all participants, regardless of personal identity (gender, race, sexual
orientation, etc.). In the classroom and our discussion forums, everyone is expected to treat everyone
else with dignity and respect. If you feel unwelcome or mistreated for any reason, please let a
member of the teaching staff know so we can work to make things better.

Accommodations for Students with Disabilities

Tufts University values the diversity of our body of students, staff, and faculty and recognizes
the important contribution each student makes to our unique community. Tufts is committed to
providing equal access and support to all qualified students through the provision of reasonable ac-
commodations so that each student may fully participate in the Tufts experience. If a student has
a disability that requires reasonable accommodations, they should please contact the StAAR Cen-
ter (formerly Student Accessibility Services) at StaarCenter@tufts.edu or 617-627-4539 to make
an appointment with an accessibility representative to determine appropriate accommodations.
Please be aware that accommodations cannot be enacted retroactively; all accomo-
dation notes must be provided to the instructor wihtin one week of the note being
written to guarantee consideration.

Academic Support at the StAAR Center

The StAAR Center (formerly the Academic Resource Center and Student Accessibility Services)
offers a variety of resources to all students (both undergraduate and graduate) in the Schools of
Arts and Sciences, and Engineering, the SMFA, and The Fletcher School; services are free to all
enrolled students. Students may make an appointment to work on any writing-related project or
assignment, attend subject tutoring in a variety of disciplines, or meet with an academic coach to
hone fundamental academic skills like time management or overcoming procrastination. Students
can make an appointment for any of these services by visiting tutorfinder.studentservices.tufts.edu,
or by visiting students.tufts.edu/staar-center.

Religious Holy Days

We will reasonably accommodate any student who, for reasons of observing religious holy days,
will be absent from class or experience any hardship in the completion of their work during the
holy days. The instructor does not need to be notifed about absence from class - simply check with
a classmate to get notes and any announcements. Please contact the instructor if you need any
additional accommodation (such as for assignments or exams); reasonable accommodations will be
allowed at no penalty.


https://tutorfinder.studentservices.tufts.edu
https://students.tufts.edu/staar-center

	Course Overview
	Technical Resources
	Tentative Schedule
	Assessments and Grading
	Collaboration and Academic Honesty
	Policy on Sharing Materials
	Inclusivity, Accessibility, and Additional Help

