
Pure Laziness: An Introduction to the
Haskell Programming Language

Richard Townsend (Oberlin ‘13)

Columbia University

pure

Richard’s Route to Research

Richard’s Route to Research

Richard’s Route to Research

Richard’s Route to Research

Richard’s Route to Research

Richard’s Route to Research

Bridging the abstraction gap

High-level Low-levelProgramming Languages

AssemblyCJavaPython

?

Haskell is Higher!

Pure functions Powerful Type System Lazy Evaluation

Exploring the Strange New World of Haskell

Exploring the Strange New World of Haskell

learnyouahaskell.com

Pure Functional Style

f(x) = x2 - 5

g(y) = f(4) + y

f x = x^2 - 5

g y = f 4 + y

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

top3 doc = result

“In computer science functional
programming is a programming
paradigm a style of building the structure
and elements of computer programs that
treats computation as the evaluation of
mathematical functions
and avoids changing state and mutable
data It is a declarative programming
paradigm which means programming is
done with expressions”

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

top3 doc = result

 where

 listOfWords = words doc
["In","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

import Data.Char

top3 doc = result

 where

 listOfWords = words doc

 lowercase str = map toLower str

["In","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

["in","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"it","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = sort listOfWords

["a","a","a","and","and","and","as","
avoids","building","changing","
computation",
"computer","computer","data",
"declarative","done","elements",
"evaluation","expressions","functional",
"functions","in","is","is","is","it",
"mathematical","means","mutable","of",
"of","of","paradigm","paradigm",
"programming","programming",
"programming","programming",
"programs","science","state","structure",
"style","that","the","the","treats","which",
"with"]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = group (sort listOfWords)

[["a","a","a"],["and","and","and"],["as"],
["avoids"],["building"],["changing"],
["computation"],["computer","computer"],
["data"],["declarative"],["done"],
["elements"],["evaluation"],["expressions"],
["functional"],["functions"],["in"],
["is","is","is"],["it"],["mathematical"],
["means"],["mutable"],["of","of","of"],
["paradigm","paradigm"],
["programming","programming",
"programming","programming"],
["programs"],["science"],["state"],
["structure"],["style"],["that"],["the","the"],
["treats"],["which"],["with"]]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = group (sort listOfWords)

 largestGroups = sortBy (comparing length) wordGroups

[["as"],["avoids"],["building"],["changing"],
["computation"],["data"],["declarative"],
["done"],["elements"],["evaluation"],
["expressions"],["functional"],["functions"],
["in"],["it"],["mathematical"],["means"],
["mutable"],["programs"],["science"],
["state"],["structure"],["style"],["that"],
["treats"],["which"],["with"],["computer",
"computer"],["paradigm","paradigm"],
["the","the"],["a","a","a"],["and","and",
"and"],["is","is","is"],["of","of","of"],
["programming","programming",
"programming","programming"]]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = group (sort listOfWords)

 largestGroups = reverse (sortBy (comparing length) wordGroups)

[["programming","programming",
"programming","programming"],["of","of",
"of"],["is","is","is"],["and","and","and"],["a",
"a","a"],["the","the"],["paradigm",
"paradigm"],["computer","computer"],
["with"],["which"],["treats"],["that"],["style"],
["structure"],["state"],["science"],
["programs"],["mutable"],["means"],
["mathematical"],["it"],["in"],["functions"],
["functional"],["expressions"],["evaluation"],
["elements"],["done"],["declarative"],
["data"],["computation"],["changing"],
["building"],["avoids"],["as"]]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = group (sort listOfWords)

 largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

[["programming","programming",
"programming","programming"],["of","
of","of"],["is","is","is"]]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

 where

 listOfWords = words (lowercase doc)

 lowercase str = map toLower str

 wordGroups = group (sort listOfWords)

 largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

 result = map head largestGroups

["programming","of","is"]

Input: A String representing a
text document.

Output: A list of the 3 words
 that appear with
 highest frequency.

Powerful Type System: Explicit Types

listOfWords = words (lowercase doc)

pythag a b c = a^2 + b^2 == c^2

pythag :: Int -> Int -> Int -> Bool

length :: [a] -> Int

listOfWords :: [String]

length [] = 0

length (x:rest) = 1 + length rest

Powerful Type System: Define Your Own!
data Bool = True | False

data Shape = Square Float

| Circle Float

| Triangle Float Float Float

data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int

Powerful Type System: Using your data types
data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int

eval :: Expr -> Int

eval (Lit x) = x

eval (Binop e1 Add e2) = eval e1 + eval e2

eval (Binop e1 Mul e2) = eval e1 * eval e2

eval (Binop e1 Sub e2) = eval e1 - eval e2

eval (Binop e1 Div e2) = eval e1 `div` eval e2

eval (Lit 3)

=> 3

eval (Binop (Lit 3) Add (Lit 4))

=> eval (Lit 3) + eval (Lit 4)

=> 3 + eval (Lit 4)

=> 3 + 4

=> 7

Executing Code
f :: Int -> Int -> Int

f x y = x + 1

f (27 + 2) (sum [1..10000000])

=> f 29 (sum [1..10000000])

=> ... computing sum ...
=> f 29 50000005000000

=> 29 + 1

=> 30

Laziness: I’ll do it later...
f :: Int -> Int -> Int

f x y = x + 1

f (27 + 2) (sum [1..10000000])

=> (27 + 2) + 1

=> 29 + 1

=> 30

Laziness: To Infinity...
[1..10000000]

=> enumFromTo 1 10000000

enumFromTo :: Int -> Int -> [Int]

enumFromTo x y =

if x > y

 then []

 else x : enumFromTo (x+1) y

enumFrom :: Int -> [Int]

enumFrom x = x : enumFrom (x+1)

[1..]

=> enumFrom 1

=> 1 : enumFromTo (1 + 1) 10000000

=> 1 : 2 : enumFromTo (2 + 1) 10000000

=> … lots of calls …

=> 1 : 2 : … : 10000000 : []

=> 1 : enumFrom (1 + 1)

=> 1 : 2 : enumFrom (2 + 1)

=> … lots of calls …

=> 1 : 2 : … : 10000000 : enumFrom (10000000 + 1)

=> … infinitely more calls …

Laziness: To Infinity...
enumFrom :: Int -> [Int]

enumFrom x = x : enumFrom (x+1)

take :: Int -> [a] -> [a]

take 0 _ = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

=> take 2 (enumFrom 1)

=> take 2 (1 : enumFrom 2)

=> 1 : take 1 (enumFrom 2)

=> 1 : take 1 (2 : enumFrom 3)

=> 1 : 2 : take 0 (enumFrom 3)

=> 1 : 2 : []

take 2 [1..]

Laziness: ...and beyond!

=> 1 : 1 : zipWith (+) (1:1:?) (1:?)

=> 1 : 1 : (1 + 1) : zipWith (+) (1:(1 + 1):?) ((1 + 1):?)

=> 1 : 1 : 2 : zipWith (+) (1:2:?) (2:?)

=> 1 : 1 : 2 : 3 : zipWith (+) (2:3:?) (3:?)

=> …

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f [] _ = []

zipWith f _ [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fibs !! 0

=> 1

fibs !! 6

=> 13

fibs !! 100

=> 573147844013817084101

Proofs Are Trivial

unpack(pack(v))
= unpack(pack(R p (R y zk)k))
= unpack(P p (y (pack z)k)k)
= R p (R y (unpack (pack z))k)k

= R p (R y zk)k

= v

Embedding Languages

data Stream a = a :> (Stream a)

data MemOp addr word = MemRead addr
 | MemWrite addr word

zipWith :: (a -> b -> c) ->

 Stream a -> Stream b -> Stream c

zipWith f (a :> as) (b :> bs) =
f a b :> zipWith f as bs

Category Theory
class Applicative m => Monad m where

 (>>=) :: forall a b. m a -> (a -> m b) -> m b

 (>>) :: forall a b. m a -> m b -> m b

 m >> k = m >>= _ -> k

 return :: a -> m a

 return = pure

 fail :: String -> m a

 fail s = error s

Thank you!

