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Haskell is Higher!

Pure functions Powerful Type System Lazy Evaluation
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Pure Functional Style

f(x) = x2 - 5

g(y) = f(4) + y

f x = x^2 - 5

g y = f 4 + y



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.

top3 doc = result

  
“In computer science functional 
programming is a programming 
paradigm a style of building the structure 
and elements of computer programs that 
treats computation as the evaluation of 
mathematical functions
and avoids changing state and mutable 
data It is a declarative programming 
paradigm which means programming is 
done with expressions”



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.

top3 doc = result

  where

    listOfWords = words doc
["In","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.

import Data.Char

top3 doc = result

  where

    listOfWords = words doc

    lowercase str = map toLower str

["In","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

  

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.

["in","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation","as","the","evaluation","of",
"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"it","is","a","declarative","programming",
"paradigm","which","means",
"programming","is","done","with",
"expressions"]



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = sort listOfWords

  

["a","a","a","and","and","and","as","
avoids","building","changing","
computation",
"computer","computer","data",
"declarative","done","elements",
"evaluation","expressions","functional",
"functions","in","is","is","is","it",
"mathematical","means","mutable","of",
"of","of","paradigm","paradigm",
"programming","programming",
"programming","programming",
"programs","science","state","structure",
"style","that","the","the","treats","which",
"with"]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = group (sort listOfWords)

  

[["a","a","a"],["and","and","and"],["as"],
["avoids"],["building"],["changing"],
["computation"],["computer","computer"],
["data"],["declarative"],["done"],
["elements"],["evaluation"],["expressions"],
["functional"],["functions"],["in"],
["is","is","is"],["it"],["mathematical"],
["means"],["mutable"],["of","of","of"],
["paradigm","paradigm"],
["programming","programming",
"programming","programming"],
["programs"],["science"],["state"],
["structure"],["style"],["that"],["the","the"],
["treats"],["which"],["with"]]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = group (sort listOfWords)

    largestGroups = sortBy (comparing length) wordGroups

  

[["as"],["avoids"],["building"],["changing"],
["computation"],["data"],["declarative"],
["done"],["elements"],["evaluation"],
["expressions"],["functional"],["functions"],
["in"],["it"],["mathematical"],["means"],
["mutable"],["programs"],["science"],
["state"],["structure"],["style"],["that"],
["treats"],["which"],["with"],["computer",
"computer"],["paradigm","paradigm"],
["the","the"],["a","a","a"],["and","and",
"and"],["is","is","is"],["of","of","of"],
["programming","programming",
"programming","programming"]]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = group (sort listOfWords)

    largestGroups = reverse (sortBy (comparing length) wordGroups)

  

[["programming","programming",
"programming","programming"],["of","of",
"of"],["is","is","is"],["and","and","and"],["a",
"a","a"],["the","the"],["paradigm",
"paradigm"],["computer","computer"],
["with"],["which"],["treats"],["that"],["style"],
["structure"],["state"],["science"],
["programs"],["mutable"],["means"],
["mathematical"],["it"],["in"],["functions"],
["functional"],["expressions"],["evaluation"],
["elements"],["done"],["declarative"],
["data"],["computation"],["changing"],
["building"],["avoids"],["as"]]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = group (sort listOfWords)

    largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

  

[["programming","programming",
"programming","programming"],["of","
of","of"],["is","is","is"]]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Pure Functional Style: Example

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

import Data.Char

import Data.List

import Data.Ord

top3 doc = result

  where

    listOfWords = words (lowercase doc)

    lowercase str = map toLower str

    wordGroups = group (sort listOfWords)

    largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

    result = map head largestGroups

["programming","of","is"]

Input: A String representing a        
text document.

Output: A list of the 3 words 
   that appear with 
   highest frequency.



Powerful Type System: Explicit Types

listOfWords = words (lowercase doc)

pythag a b c = a^2 + b^2 == c^2

pythag :: Int -> Int -> Int -> Bool

length :: [a] -> Int

listOfWords :: [String]

length [] = 0

length (x:rest) = 1 + length rest



Powerful Type System: Define Your Own!
data Bool = True | False

data Shape = Square Float 

| Circle Float

| Triangle Float Float Float

data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int



Powerful Type System: Using your data types
data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int                      

eval :: Expr -> Int

eval (Lit x) = x

eval (Binop e1 Add e2) = eval e1 + eval e2

eval (Binop e1 Mul e2) = eval e1 * eval e2

eval (Binop e1 Sub e2) = eval e1 - eval e2

eval (Binop e1 Div e2) = eval e1 `div` eval e2

eval (Lit 3) 

=> 3

eval (Binop (Lit 3) Add (Lit 4))

=> eval (Lit 3) + eval (Lit 4)

=> 3 + eval (Lit 4)

=> 3 + 4

=> 7



Executing Code
f :: Int -> Int -> Int

f x y = x + 1

f (27 + 2) (sum [1..10000000])

=> f 29 (sum [1..10000000])

=> ... computing sum ...
=> f 29 50000005000000

=> 29 + 1

=> 30



Laziness: I’ll do it later... 
f :: Int -> Int -> Int

f x y = x + 1

f (27 + 2) (sum [1..10000000])

=> (27 + 2) + 1

=> 29 + 1

=> 30



Laziness: To Infinity...
[1..10000000]

=> enumFromTo 1 10000000

enumFromTo :: Int -> Int -> [Int]

enumFromTo x y = 

if x > y 

  then [] 

  else x : enumFromTo (x+1) y

enumFrom :: Int -> [Int]

enumFrom x = x : enumFrom (x+1)

[1..]

=> enumFrom 1

=> 1 : enumFromTo (1 + 1) 10000000

=> 1 : 2 : enumFromTo (2 + 1) 10000000

=> … lots of calls … 

=>  1 : 2 : … : 10000000 : []

=> 1 : enumFrom (1 + 1)

=> 1 : 2 : enumFrom (2 + 1)

=> … lots of calls … 

=>  1 : 2 : … : 10000000 : enumFrom (10000000 + 1)

=> … infinitely more calls … 



Laziness: To Infinity...
enumFrom :: Int -> [Int]

enumFrom x = x : enumFrom (x+1)

take :: Int -> [a] -> [a]

take 0 _  = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

=> take 2 (enumFrom 1)

=> take 2 (1 : enumFrom 2)

=> 1 : take 1 (enumFrom 2)

=> 1 : take 1 (2 : enumFrom 3)

=> 1 : 2 : take 0 (enumFrom 3)

=> 1 : 2 : []

take 2 [1..]



Laziness: ...and beyond!

=> 1 : 1 : zipWith (+) (1:1:?) (1:?)

=> 1 : 1 : (1 + 1) : zipWith (+) (1:(1 + 1):?) ((1 + 1):?)

=> 1 : 1 : 2 : zipWith (+) (1:2:?) (2:?)

=> 1 : 1 : 2 : 3 : zipWith (+) (2:3:?) (3:?)

=> …

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f [] _ = []

zipWith f _ [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fibs !! 0

=> 1

fibs !! 6

=> 13

fibs !! 100

=> 573147844013817084101



Proofs Are Trivial

unpack(pack(v))
= unpack(pack(R p (R y zk)k))
= unpack(P p (y (pack z)k)k)
= R p (R y (unpack (pack z))k)k

= R p (R y zk)k

= v



Embedding Languages

data Stream a = a :> (Stream a)

data MemOp addr word = MemRead addr 
                     | MemWrite addr word

zipWith :: (a -> b -> c) -> 

  Stream a -> Stream b -> Stream c

zipWith f (a :> as) (b :> bs) = 
f a b :> zipWith f as bs



Category Theory
class Applicative m => Monad m where

    (>>=)       :: forall a b. m a -> (a -> m b) -> m b

    (>>)        :: forall a b. m a -> m b -> m b

    m >> k = m >>= \_ -> k

    return      :: a -> m a

    return      = pure

    fail        :: String -> m a

    fail s      = error s



Thank you!


