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Pure Functional Style: Example P o

Output: A list of the 3 words
that appear with
highest frequency.

top3 doc = result

“In computer science functional
programming is a programming
paradigm a style of building the structure
and elements of computer programs that
treats computation as the evaluation of
mathematical functions

and avoids changing state and mutable
data It is a declarative programming
paradigm which means programming is
done with expressions”

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=



Pure Functional Style: Example

top3 doc = result
where
listOfWords = words doc

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["In","computer","science","functional”,
"programming","is","a","programming",
llparadigmll,llall,llstylell,llofll7llbui|dingll’llthell,

"structure","and","elements","of",

"computer","programs","that","treats",

"computation”,"as","the","evaluation","of",

"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import

top3 doc = result
where
listOfWords = words doc
lowercase str = map tolLower str

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["In","computer","science","functional”,
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation”,"as","the","evaluation","of",
"mathematical”,"functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["in","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation”,"as","the","evaluation","of",
"mathematical”,"functions","and","avoids",
"changing","state","and","mutable","data",
"it""is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = sort listOfWords

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

['a","a","a","and","and","and","as","
avoids","building","changing","
computation",
"computer","computer”,"data",
"declarative","done","elements",
"evaluation","expressions","functional",
"functions","in","is","is","is","it",
"mathematical”,"means","mutable","of",
"of","of","paradigm","paradigm"”,

"programming","programming",
"programming","programming",
"programs","science","state","structure",
"style","that","the","the","treats","which",

"with"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["a","a","a"],["and","and","and"],["as"],
["avoids"],["building"],["changing"],

["computation"],["computer","computer"],
["data"],["declarative"],["done"],
["elements"],["evaluation"],["expressions"],
["functional],["functions"],["in"],
["is","is","is"],["it"],["mathematical"],
["'means"],["mutable"],["of","of","of"],

["paradigm"”,"paradigm"],
["programming","programming",
"programming","programming"],
["programs"],["science"],["state"],
["structure"],["style"],["that"],["the","the"],

["treats"],["which"],["with"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import
import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)
largestGroups = sortBy (comparing length) wordGroups

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

[["as"],["avoids"],["building"],["changing"],
["computation"],["data"],["declarative"],
["done"],["elements"],["evaluation"],
["expressions"],["functional"],["functions"],
["in"],["it"],["mathematical"],["means"],
["mutable"],["programs"],["science"],
["state"],["structure"],["style"],["that"],
["treats"],["which"],["with"],["computer",
"computer"],["paradigm","paradigm"],
["the","the"],["a","a","a"],["and","and"
"and"],["is","is","is"],["of","of","of"],
["programming","programming",

"programming","programming"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example

import
import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)
largestGroups = reverse (sortBy (comparing length) wordGroups)

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

[["programming","programming",
"programming","programming"],["of","of",
"of"],["is","is","is"],["and","and","and"],["a",
"a","a"],["the","the"],["paradigm",
"paradigm"],["computer","computer"],
["with"],["which"],["treats"],["that"],["style"],
["structure"],["state"],["science"],
["programs"],["mutable"],["means"],
["'mathematical"],["it"],["in"],["functions"],
["functional"],["expressions"],["evaluation"],
["elements"],["done"],["declarative"],
["data"],["computation"],["changing"],

["building"],["avoids"],["as"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=




Pure Functional Style: Example P o

import Output: A list of the 3 words
import that appear with
import highest frequency.

top3 doc = result

where
listOfWords = words (lowercase doc) Il PUEEFENTNING |, PIEErEmmiming’,
programming","programming"],["of",
lowercase str = map tolLower str of" "of'],["is","is","is"]]

wordGroups = group (sort listOfWords)
largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=



Pure Functional Style: Example P o

import Output: A list of the 3 words
import that appear with
import highest frequency.

top3 doc = result

where
listOfWords = words (lowercase doc)

["programming","of","is"]

lowercase str = map tolLower str

wordGroups = group (sort listOfWords)

largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))
result = map head largestGroups

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=



Powerful Type System: Explicit Types

listOfWords :: [String]

listOflWords = words (lowercase doc)

pythag :: Int -> Int -> Int -> Bool
pythag a b ¢ = a2 + b2 == ¢c*

length :: [a] -> Int
length [] =
length (x:rest) = 1 + length rest



Powerful Type System: Define Your Qwn!

data Bool = True | False

= Square Float
| Circle Float
| Triangle Float Float Float

data Shape

data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int



Powerful Type System: Using your data types

data Op = Add | Sub | Mul | Div
data Expr = Binop Expr Op Expr | Lit Int

eval :: Expr -> Int
eval (Lit x) = x

eval (Binop el Add e2)
eval (Binop el Mul e2)
eval (Binop el Sub e2)
eval (Binop el Div e2)

eval el + eval e2
eval el * eval e2
eval el - eval e2
eval el div eval e2

eval (Binop (Lit 2) Add (Lit 4))

eval (Lit 2) => eval (Lit 3) + eval (Lit 4)
s => 3 + eval (Lit 4)
=> 3 +

=>



Executing Code

f :: Int -> Int -> Int
fxXy=x+

+ 2) (sum [1.. 1)
f (sum [1.. 1)
> ... computing sum ...
.F

+

\'4

\'4
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Laziness: I'll do it later...

f :: Int -> Int -> Int
fxXy=x+

( + 2) (sum [1.. 1)
> ( + 2) +
+

num n =h
\4

\'4



Laziness: To Infinity...

[

=>

]

enumFromTo
: enumFromTo (1 + 1)

: enumFromTo (2 + 1)
. lots of calls ...
[]
-]
enumFrom
: enumFrom (1 + 1)
: enumFrom (2 + 1)
. lots of calls ...

: Do o : enumFrom (
. infinitely more calls ...

enumFromTo :: Int -> Int -> [Int]
enumFromTo X y =
if x >y
then []
else x : enumFromTo (x+1) y
enumFrom :: Int -> [Int]

enumFrom x = X : enumFrom (x+1)




Laziness: To Infinity...

e [ : enumFrom :: Int -> [Int]
. enumFrom X = X : enumFrom (x+1)
=> take (enumFrom 1)
=> take 2 (1 : enumFrom 2) take :: Int -> [a] -> [a]
=> 1 : take 1 (enumFrom 2) take =[]
=> 1 : take 1 (2 : enumFrom 3) fake n E] _y
=2 b e F?ke (EmFrRen =) take n (x:xs) = x : take (n-1) xs
=>1: 2 :




Laziness: ...and beyond!

zipWith :: (@ -> b -> ¢) -> [a] -> [b] -> [C]

zipWith £ [] _ =
zipWith £ _[] =
zipWith f (x:xs)

[]
[]
(y:ys) = f xy:

zipWith f xs ys

fibs = : : zipWith (+) fibs (tail fibs)

=5 : cozipWith (+) (1:1:?) (1:?)

=> : (1 + 1) : ozipWith (+) (1:(1 + 1):?) ((
=> : : :ozipWith (+) (1:2:?) (2:?)

=> : :ozipWith (+) (2:3:?) (3:?)

=> .

fibs !! fibs !! fibs !!

=> => =>

+

):?)



Proofs Are Trivial

i, _n.-.n' JJ,:
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unpack(pack(v))

unpack(pack(R p (R y z*)¥))
unpack(P p (y (pack z)*)¥)

R p (Ry (unpack (pack z))¥)k
Rp (Ry z"

v



data Stream a = a :> (Stream a)

data MemOp addr word = MemRead addr
| MemWrite addr word

zipWith :: (a -> b -> ¢) ->
Stream a -> Stream b -> Stream c
zipWith £ (a :> as) (b :> bs) =
f ab :> zipWith f as bs




Category Theory
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class

>>=

>>

=> where
forall a b. ma -> (a ->mb) ->mb

forall a b. ma ->mb ->mb

m> k=m>=\_ ->Kk

return
return

fail
fail s

a ->ma
pure

String -> m a
error s



Thank you!




