Pure Laziness: An Introduction to the
Haskell Programming Language

Richard Townsend (Oberlin ‘13)
Columbia University

Richard's Route to Research

Richard's Route to Research

Richard's Route to Research

Richard's Route to Research

Richard's Route to Research

Richard's Route to Research

Brldgmg the abstractlon gap

High-level ? Programming Languages Low-level

PN A

Python Java Assembly

Haskell is Higher!

Pure functions Powerful Type System Lazy Evaluation

L S
"

S)

_UNLIMITED POWER (OVER TYPESII!

Exploring the Strange New World of Haskell

Exploring the Strange New World of Haskell

Learn You a
Haskell for
Great Good!

)
Miran Lipovaéa KO

learnyouahaskell.com

Pure Functional Style

f X

g Y

ty

Pure Functional Style: Example P o

Output: A list of the 3 words
that appear with
highest frequency.

top3 doc = result

“In computer science functional
programming is a programming
paradigm a style of building the structure
and elements of computer programs that
treats computation as the evaluation of
mathematical functions

and avoids changing state and mutable
data It is a declarative programming
paradigm which means programming is
done with expressions”

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

top3 doc = result
where
listOfWords = words doc

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["In","computer","science","functional”,
"programming","is","a","programming",
llparadigmll,llall,llstylell,llofll7llbui|dingll’llthell,

"structure","and","elements","of",

"computer","programs","that","treats",

"computation”,"as","the","evaluation","of",

"mathematical","functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import

top3 doc = result
where
listOfWords = words doc
lowercase str = map tolLower str

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["In","computer","science","functional”,
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation”,"as","the","evaluation","of",
"mathematical”,"functions","and","avoids",
"changing","state","and","mutable","data",
"It","is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["in","computer","science","functional",
"programming","is","a","programming",
"paradigm","a","style","of","building","the",
"structure","and","elements","of",
"computer","programs","that","treats",
"computation”,"as","the","evaluation","of",
"mathematical”,"functions","and","avoids",
"changing","state","and","mutable","data",
"it""is","a","declarative","programming",
"paradigm","which","means",

"programming","is","done","with",
"expressions"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = sort listOfWords

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

['a","a","a","and","and","and","as","
avoids","building","changing","
computation",
"computer","computer”,"data",
"declarative","done","elements",
"evaluation","expressions","functional",
"functions","in","is","is","is","it",
"mathematical”,"means","mutable","of",
"of","of","paradigm","paradigm"”,

"programming","programming",
"programming","programming",
"programs","science","state","structure",
"style","that","the","the","treats","which",

"with"]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

["a","a","a"],["and","and","and"],["as"],
["avoids"],["building"],["changing"],

["computation"],["computer","computer"],
["data"],["declarative"],["done"],
["elements"],["evaluation"],["expressions"],
["functional],["functions"],["in"],
["is","is","is"],["it"],["mathematical"],
["'means"],["mutable"],["of","of","of"],

["paradigm"”,"paradigm"],
["programming","programming",
"programming","programming"],
["programs"],["science"],["state"],
["structure"],["style"],["that"],["the","the"],

["treats"],["which"],["with"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import
import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)
largestGroups = sortBy (comparing length) wordGroups

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

[["as"],["avoids"],["building"],["changing"],
["computation"],["data"],["declarative"],
["done"],["elements"],["evaluation"],
["expressions"],["functional"],["functions"],
["in"],["it"],["mathematical"],["means"],
["mutable"],["programs"],["science"],
["state"],["structure"],["style"],["that"],
["treats"],["which"],["with"],["computer",
"computer"],["paradigm","paradigm"],
["the","the"],["a","a","a"],["and","and"
"and"],["is","is","is"],["of","of","of"],
["programming","programming",

"programming","programming"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example

import
import
import

top3 doc = result
where
listOfWords = words (lowercase doc)
lowercase str = map tolLower str
wordGroups = group (sort listOfWords)
largestGroups = reverse (sortBy (comparing length) wordGroups)

Input: A String representing a
text document.

Output: A list of the 3 words
that appear with
highest frequency.

[["programming","programming",
"programming","programming"],["of","of",
"of"],["is","is","is"],["and","and","and"],["a",
"a","a"],["the","the"],["paradigm",
"paradigm"],["computer","computer"],
["with"],["which"],["treats"],["that"],["style"],
["structure"],["state"],["science"],
["programs"],["mutable"],["means"],
["'mathematical"],["it"],["in"],["functions"],
["functional"],["expressions"],["evaluation"],
["elements"],["done"],["declarative"],
["data"],["computation"],["changing"],

["building"],["avoids"],["as"]]

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example P o

import Output: A list of the 3 words
import that appear with
import highest frequency.

top3 doc = result

where
listOfWords = words (lowercase doc) Il PUEEFENTNING |, PIEErEmmiming’,
programming","programming"],["of",
lowercase str = map tolLower str of" "of'],["is","is","is"]]

wordGroups = group (sort listOfWords)
largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Pure Functional Style: Example P o

import Output: A list of the 3 words
import that appear with
import highest frequency.

top3 doc = result

where
listOfWords = words (lowercase doc)

["programming","of","is"]

lowercase str = map tolLower str

wordGroups = group (sort listOfWords)

largestGroups = take 3 (reverse (sortBy (comparing length) wordGroups))
result = map head largestGroups

http://www.onlamp.com/pub/a/onlamp/2007/07/12/introduction-to-haskell-pure-functions.html?page=

Powerful Type System: Explicit Types

listOfWords :: [String]

listOflWords = words (lowercase doc)

pythag :: Int -> Int -> Int -> Bool
pythag a b ¢ = a2 + b2 == ¢c*

length :: [a] -> Int
length [] =
length (x:rest) = 1 + length rest

Powerful Type System: Define Your Qwn!

data Bool = True | False

= Square Float
| Circle Float
| Triangle Float Float Float

data Shape

data Op = Add | Sub | Mul | Div

data Expr = Binop Expr Op Expr | Lit Int

Powerful Type System: Using your data types

data Op = Add | Sub | Mul | Div
data Expr = Binop Expr Op Expr | Lit Int

eval :: Expr -> Int
eval (Lit x) = x

eval (Binop el Add e2)
eval (Binop el Mul e2)
eval (Binop el Sub e2)
eval (Binop el Div e2)

eval el + eval e2
eval el * eval e2
eval el - eval e2
eval el div eval e2

eval (Binop (Lit 2) Add (Lit 4))

eval (Lit 2) => eval (Lit 3) + eval (Lit 4)
s => 3 + eval (Lit 4)
=> 3 +

=>

Executing Code

f :: Int -> Int -> Int
fxXy=x+

+ 2) (sum [1.. 1)
f (sum [1.. 1)
> ... computing sum ...
.F

+

\'4

\'4

| | | A | I | I o
\'4
—~

\4

Laziness: I'll do it later...

f :: Int -> Int -> Int
fxXy=x+

(+ 2) (sum [1.. 1)
> (+ 2) +
+

num n =h
\4

\'4

Laziness: To Infinity...

[

=>

]

enumFromTo
: enumFromTo (1 + 1)

: enumFromTo (2 + 1)
. lots of calls ...
[]
-]
enumFrom
: enumFrom (1 + 1)
: enumFrom (2 + 1)
. lots of calls ...

: Do o : enumFrom (
. infinitely more calls ...

enumFromTo :: Int -> Int -> [Int]
enumFromTo X y =
if x >y
then []
else x : enumFromTo (x+1) y
enumFrom :: Int -> [Int]

enumFrom x = X : enumFrom (x+1)

Laziness: To Infinity...

e [: enumFrom :: Int -> [Int]
. enumFrom X = X : enumFrom (x+1)
=> take (enumFrom 1)
=> take 2 (1 : enumFrom 2) take :: Int -> [a] -> [a]
=> 1 : take 1 (enumFrom 2) take =[]
=> 1 : take 1 (2 : enumFrom 3) fake n E] _y
=2 b e F?ke (EmFrRen =) take n (x:xs) = x : take (n-1) xs
=>1: 2 :

Laziness: ...and beyond!

zipWith :: (@ -> b -> ¢) -> [a] -> [b] -> [C]

zipWith £ [] _ =
zipWith £ _[] =
zipWith f (x:xs)

[]
[]
(y:ys) = f xy:

zipWith f xs ys

fibs = : : zipWith (+) fibs (tail fibs)

=5 : cozipWith (+) (1:1:?) (1:?)

=> : (1 + 1) : ozipWith (+) (1:(1 + 1):?) ((
=> : : :ozipWith (+) (1:2:?) (2:?)

=> : :ozipWith (+) (2:3:?) (3:?)

=> .

fibs !! fibs !! fibs !!

=> => =>

+

):?)

Proofs Are Trivial

i, _n.-.n' JJ,:
\. -‘r ,-,:,J .-'-"{

Ay g

".;J,l "‘fﬂ{.r) =l
? 4r7) .-'-'r-.a"".%rﬁ”’“ﬁ f

unpack(pack(v))

unpack(pack(R p (R y z*)¥))
unpack(P p (y (pack z)*)¥)

R p (Ry (unpack (pack z))¥)k
Rp (Ry z"

v

data Stream a = a :> (Stream a)

data MemOp addr word = MemRead addr
| MemWrite addr word

zipWith :: (a -> b -> ¢) ->
Stream a -> Stream b -> Stream c
zipWith £ (a :> as) (b :> bs) =
f ab :> zipWith f as bs

Category Theory

HASKELL

— PRODUCTMTY
—— SELF-ASSESSVENT

EG E
HENAD: CATEGORY THEORY

W™
\
\\
My BRAIN HORTS /3

S AR

EXPERIENCE

class

>>=

>>

=> where
forall a b. ma -> (a ->mb) ->mb

forall a b. ma ->mb ->mb

m> k=m>=_ ->Kk

return
return

fail
fail s

a ->ma
pure

String -> m a
error s

Thank you!

